Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 196: 68-78, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36401934

RESUMO

Feeder cells are essential to derive pluripotent stem cells (PSCs). Mouse embryonic fibroblasts (MEF) are widely used as feeder to generate and culture embryonic stem cells (ESCs) and induced PSCs (iPSCs) in many species. However it may not be suitable for livestock ESCs/iPSCs due to interspecies difference. Previously we derived bovine iPSCs from bovine Sertoli cells using MEF feeder. Here we compared the effects of MEF feeder and bovine embryonic fibroblasts (BEF) feeder on the maintenance of bovine iPSC pluripotency and morphology as well their contributions to the naïve-like conversion, based on a naïve medium (NM). The results showed successful conversion of the primed bovine iPSCs to naïve-like state within 3-4 days both on MEF feeder and BEF feeder in NM (termed as MNM and BNM respectively). These naïve-like iPSCs showed normal karyotype. There were more iPSC colonies under BNM condition than MNM condition. Epigenetically, histone modification H3K4 was upregulated, while H3K27 was downregulated in the naïve-like iPSCs. We further analyzed the naïve markers and differentiation potential both in vitro and in vivo of these cells, which were all reserved throughout the maintenance. Together, bovine naïve-like iPSCs can be generated both on MEF and BEF feeder in NM condition. The BNM condition is able to sustain the pluripotency and differentiation potential of the naïve-like bovine iPSCs, and improve the conversion efficiency.


Assuntos
Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Bovinos , Masculino , Células de Sertoli , Fibroblastos
2.
J Chem Neuroanat ; 119: 102058, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896558

RESUMO

Schisandrin A and B (Sch A and B) are the important components of Asian dietary supplement and phytomedicine Schisandra chinensis (S. chinensis). They can enhance adult neurogenesis in vivo; however, these effects still need to be verified. Here NE-4 C neural stem cells (NSCs) were employed as the in vitro model and treated with Sch A and B at 0.1 µg/mL. EdU (5-Ethynyl-2'-deoxyuridine) labeling showed that both Sch A and B treatments enhanced NSC proliferation. Real-time PCR analysis showed the mRNA abundances of telomerase gene Tert and cell cycle gene Cyclin D1 were significantly up-regulated after the treatments. During the neurosphere induction, Sch B enhanced the neurosphere formation and neuronal differentiation, and increased the neurosphere semidiameters. Detection of the neuron differentiation marker Mapt indicates that both Sch A and B, especially Sch B, benefits the induced neuronal differentiation. Sch B treatment also enhanced mRNA expressions of the neurosphere-specific adhesion molecule Cdh2 and Wnt pathway-related genes including Mmp9, Cyclin D1 and ß-catenin. Together, Sch A especially Sch B, promotes the proliferation, affects the survival, differentiation and neurogenesis of NSCs, which is consistent with their in vivo effects. This study provides further clue on the potential neuropharmacological effects of S. chinensis.


Assuntos
Células-Tronco Neurais , Diferenciação Celular , Proliferação de Células , Ciclo-Octanos , Lignanas , Neurogênese , Compostos Policíclicos
3.
J Adv Vet Anim Res ; 8(2): 218-223, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34395591

RESUMO

OBJECTIVE: Sertoli cells (SCs) are important sustentacular cells in the seminiferous tubules of the testis. Isolation and identification of SCs are the premise for studying their functions. Since New Zealand rabbit is a stable strain which is widely used for biomedical research and animal farming, this study aimed to develop a simple and effective protocol for SC isolation in New Zealand rabbits. MATERIALS AND METHODS: The SCs of three 30-day-old New Zealand rabbits were isolated by incubation with enzymatic digestion I (Dulbecco's modified Eagle medium supplemented with 1 mg/ml collagenase IV and 50 µg/ml DNase I) and digestion II (digestion I + 1 mg/ml hyaluronidase + 1 mg/ml trypsin), as well as differential plating. The cells were enriched and identified by using immunocytochemical staining and reverse transcription polymerase chain reaction analysis. RESULTS: Homogeneous cells were obtained. They presented the typical large cell body and an irregular pyramidal shape after differential plating and passaging. These cells expressed mRNA of the SC marker sex-determining region Y-box 9 (SOX9) instead of the Leydig cell marker StAR. Immunocytochemically, they are positive of SOX9, GATA binding protein 4, and androgen-binding protein. CONCLUSION: The SCs were enriched from the testicular tissues of prepubertal New Zealand rabbits by a simple and effective protocol, which provides a basis for further theoretical researches and practical applications.

4.
Cryobiology ; 101: 105-114, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33989617

RESUMO

Germplasm preservation of livestock or endangered animals and expansion of germline stem cells are important. The purpose of this study is to investigate whether supplementation of trehalose to the freezing medium (FM) reduces tissular damage and improves the quality of testicular cells in the cryopreserved bovine testicular tissues. We herein established an optimized protocol for the cryopreservation of bovine testicular tissues, and the isolation as well as culture of bovine germ cells containing spermatogonial stem cells (SSCs) from these tissues. The results showed that FM containing 10% dimethyl sulfoxide (Me2SO/DMSO), 10% knockout serum replacement (KSR) and 20% trehalose (FM5) combined with the uncontrolled slow freezing (USF) procedures has the optimized cryoprotective effect on bovine testicular tissues. The FM5 + USF protocol reduced the cell apoptosis, maintained high cell viability, supported the structural integrity and seminiferous epithelial cohesion similar to that in the fresh tissues. Viable germ cells containing SSCs were effectively isolated from these tissues and they maintained germline marker expressions in the co-testicular cells and co-mouse embryonic fibroblasts (MEF) feeder culture systems respectively, during the short-term culture. Additionally, upregulated transcriptions of spermatogenic differentiation marker C-KIT and meiotic marker SYCP3 were detected in these cells after retinoic acid-induced differentiation. Together, FM5 + USF is suitable for the cryopreservation of bovine testicular tissues, with benefits of reducing the apoptosis, maintaining the cell viability, supporting the testicular structure integrity, and sustaining the survival and differentiation potential of bovine germ cells containing SSCs.


Assuntos
Criopreservação , Trealose , Animais , Bovinos , Sobrevivência Celular , Criopreservação/métodos , Crioprotetores/farmacologia , Dimetil Sulfóxido , Fibroblastos , Masculino , Camundongos , Espermatogônias , Testículo , Trealose/farmacologia
5.
Andrologia ; 53(6): e14056, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33763906

RESUMO

Germplasm cryopreservation and expansion of gonocytes/prospermatogonia or spermatogonial stem cells (SSCs) are important; however, it's difficult in cattle. Since inhibitors of Mek1/2 and Gsk3ß (2i) can enhance pluripotency maintenance, effects of 2i-based medium on the cultivation of bovine prospermatogonia from the cryopreserved tissues were examined. The testicular tissues of newborn bulls were well cryopreserved. High mRNA levels of prospermatogonium/SSC markers (PLZF, GFRα-1) and pluripotency markers (Oct4/Pouf5, Sox2, Nanog) were detected and the PLZF+ /GFRα-1+ prospermatogonia were consistently identified immunohistochemically in the seminiferous cords. Using differential plating and Percoll-based centrifugation, 41.59% prospermatogonia were enriched and they proliferated robustly in 2i medium. The 2i medium boosted mRNA abundances of Pouf5, Sox2, Nanog, GFRα-1, PLZF, anti-apoptosis gene Bcl2, LIF receptor gene LIFR and enhanced PLZF protein expression, but suppressed mRNA expressions of spermatogonial differentiation marker c-kit and pro-apoptotic gene Bax, in the cultured prospermatogonia. It also alleviated H2 O2 -induced apoptosis of the enriched cells and decreased histone H3 lysine (K9) trimethylation (H3K9me3) and its methylase Suv39h1/2 mRNA level in the cultured seminiferous cords. Overall, 2i medium improves the cultivation of bovine prospermatogonia isolated from the cryopreserved testes, by inhibiting Suv39h1/2-mediated H3K9me3 through Mek1/2 and Gsk3ß signalling, evidencing successful cryopreservation and expansion of bovine germplasm.


Assuntos
Células-Tronco Germinativas Adultas , Espermatogônias , Animais , Bovinos , Criopreservação , Meios de Cultura , Masculino , Testículo
6.
Anim Reprod Sci ; 214: 106303, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32087919

RESUMO

Sertoli cells (SC) have important functions in spermatogenesis by regulating development of spermatogenic cells. Glial cell line-derived neurotrophic factor (GDNF) are produced by SC. Although the effects of GDNF on spermatogenesis have been well studied, the understanding of how GDNF is synthesized is still limited, especially in food animal producing species. Because protein kinase (PK) has varied functions in multiple cellular processes and the PK pathway modulates SC functions, the objective of the present study was to determine whether PK modulates the abundance of GDNF protein in SC of cattle. To conduct this study, immature SC were enriched from cryopreserved testicular tissues of 1-day-old bulls. These cells had a marked proliferation capacity. Results from immunostaining analysis indicated that there was a sustained abundance of SC mRNA marker protein transcripts and marker proteins: androgen bind protein (ABP), GATA4 and VIMENTIN. There was subsequent characterization of SC treated with the PK inhibitor staurosporine for 0, 1 or 2 h. Results from real-time-PCR and Western blot analyses indicated the treatment (2 h) resulted in a decrease in Gdnf mRNA transcript and GDNF protein. Additionally, the staurosporine treatment resulted in an increase in the abundance of anti-apoptosis Bcl2 and decrease in pro-apoptosis Bax mRNA transcripts. Furthermore, results of the TUNEL assay indicated there was a decrease in apoptosis in the staurosprine-treated SC. Collectively, results indicate the PK signaling is involved in regulation of GDNF protein abundance in the immature SC and the survival of these cells in cattle.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , RNA Mensageiro/metabolismo , Células de Sertoli/metabolismo , Estaurosporina/farmacologia , Animais , Animais Recém-Nascidos , Bovinos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Masculino , RNA Mensageiro/genética , Maturidade Sexual
7.
J Chem Neuroanat ; 105: 101751, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32027950

RESUMO

Schisandrin A and B (Sch A and B) are the main effective components of Schisandra chinensis (S. chinensis), which is traditionally used to enhance mental and intellectual functions in eastern Asia. Previously, we reported Sch A and B remarkably affect adult neurogenesis in the subventricular zone of mouse lateral ventricle. Since the neurogenesis in the hippocampal dentate gyrus (DG) is more important to learning, memory and cognition, here we further examined their effects on the adult DG neurogenesis. Phosphohistone H3 (PHH3) immunostaining showed that Sch B significantly enhanced the cell proliferation in the DG. Glial fibrillary acidic protein (GFAP, mostly labels astrocytes and some stem cells) staining was used to further identify the proliferating cell type. Dramatically, increases of GFAP+ cells in both Sch A and B treated groups were observed. What's more, the total numbers of the mature neurons labeled by neuron-specific nuclear protein (NeuN) were also increased in both Sch A and B treated groups compared with the controls. Together, Sch A and B enhance the adult DG neurogenesis by increasing astrocytes/stem cells and improving the survival and maturation of DG neurons. Our study shed a new light on the neuropharmacological functions of the herbal medicine S. chinensis.


Assuntos
Ciclo-Octanos/farmacologia , Giro Denteado/efeitos dos fármacos , Lignanas/farmacologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Compostos Policíclicos/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Camundongos
8.
Cryobiology ; 92: 255-257, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31954710

RESUMO

To enrich bovine gonocytes from cryopreserved testicular tissues, the cryoprotection effects of the freezing media containing knockout serum replacement (KSR) were examined. Using Minimum essential medium (MEM) + 10% dimethyl sulfoxide (Me2SO) as the basic medium, calf testicular tissues were cryopreserved in media containing 0, 5, 10, 20, 40, 90% KSR and 5% fetal bovine serum (FBS) respectively. Morphologically, the seminiferous cords and interstitium were well preserved in all groups. The gonocytes were all glial cell line-derived neurotrophic factor (GDNF) family receptor α-1 (GFRα-1) positive. The recovery rates in all KSR groups were higher than that of the 10% Me2SO group, while comparable to the 5% FBS group. The enriched gonocytes expressed gonocyte marker GFRα-1 typically. Collectively, supplementation of 5-10% KSR can achieve comparable cryoprotective effects with using 5% FBS, which is useful in future study due to its defined formulation that is more consistent in quality and stable in supply.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Soro/metabolismo , Testículo/citologia , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Congelamento , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Soro/química
9.
Theriogenology ; 146: 120-132, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31771794

RESUMO

Although induced pluripotent stem cells (iPSCs) had been generated from several somatic cell types in cattle, their pluripotency and differentiation capacities after freezing/thawing, and the dysregulated transcripts involved in pathways critical for reprogramming were not investigated. Additionally, selection of proper source cells is critical for iPSC derivation because the residual influence of the somatic origin may variegate their differentiation propensity. Sertoli cells (SCs) have special properties suitable for iPSCs derivation. Herein bovine SCs were enriched from the cryopreserved testicular tissues and reprogrammed into iPSCs using lentivirus carrying yamanaka factors (OSKM). These iPSCs have typical morphology resembling human iPSCs and remain normal karyotypes. They can express alkaline phosphatase activity and common pluripotency markers with a low methylation in the promoter region of Nanog. They can also form embryoid bodies and teratomas that give rise to cells/tissues from three embryonic germ layers. Transcriptome profiling showed that the exogenous OSKM were silenced and 8009 dysregulated mRNAs were identified. The pluripotency, methyldioxygenase and anti-apoptosis genes were all upregulated but the apoptotic gene downregulated in these iPSCs. Bunch of pathways related to the reprogramming, inflammation and viral infection pathways were upregulated, while pathways associated with the differentiation, senescence, metabolism and apoptosis were downregulated in these cells. After cryopreservation/thawing, the recovered iPSCs remain strong pluripotency and differentiation capabilities. Together, iPSCs were derived from the bovine SCs isolated from the cryopreserved neonatal bull testis, pluripotency and differentiation capacities verified, iPSCs cryopreserved, cultured and again reverified for pluripotency and differentiation capacities.


Assuntos
Bovinos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células de Sertoli/fisiologia , Transcriptoma , Animais , Reprogramação Celular , Criopreservação/veterinária , Corpos Embrioides , Regulação da Expressão Gênica , Masculino
10.
Hum Mol Genet ; 28(14): 2283-2294, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31267130

RESUMO

Parkinson's disease (PD) is associated with olfactory defects in addition to dopaminergic degeneration. Dopaminergic signalling is necessary for subventricular zone (SVZ) proliferation and olfactory bulb (OB) neurogenesis. Alpha-synuclein (α-syn or Snca) modulates dopaminergic neurotransmission, and SNCA mutations cause familial PD, but how α-syn and its mutations affect adult neurogenesis is unclear. To address this, we studied a bacterial artificial chromosome transgenic mouse expressing the A30P SNCA familial PD point mutation on an Snca-/- background. We confirmed that the SNCA-A30P transgene recapitulates endogenous α-syn expression patterns and levels by immunohistochemical detection of endogenous α-syn in a wild-type mouse and transgenic SNCA-A30P α-syn protein in the forebrain. The number of SVZ stem cells (BrdU+GFAP+) was decreased in SNCA-A30P mice, whereas proliferating (phospho-histone 3+) cells were decreased in Snca-/- and even more so in SNCA-A30P mice. Similarly, SNCA-A30P mice had fewer Mash1+ transit-amplifying SVZ progenitor cells but Snca-/- mice did not. These data suggest the A30P mutation aggravates the effect of Snca loss in the SVZ. Interestingly, calbindin+ and calretinin (CalR)+ periglomerular neurons were decreased in both Snca-/-, and SNCA-A30P mice but tyrosine hydroxylase+ periglomerular OB neurons were only decreased in Snca-/- mice. Cell death decreased in the OB granule layer of Snca-/- and SNCA-A30P mice. In the same region, CalR+ numbers increased in Snca-/- and SNCA-A30P mice. Thus, α-syn loss and human A30P SNCA decrease SVZ proliferation, cell death in the OB and differentially alter interneuron numbers. Similar disruptions in human neurogenesis may contribute to the olfactory deficits, which are observed in PD.


Assuntos
Interneurônios/citologia , Ventrículos Laterais/citologia , Bulbo Olfatório/citologia , Doença de Parkinson/genética , alfa-Sinucleína/genética , Animais , Calbindina 2/metabolismo , Morte Celular , Proliferação de Células , Modelos Animais de Doenças , Dopamina/metabolismo , Humanos , Interneurônios/metabolismo , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/genética , Doença de Parkinson/metabolismo , Mutação Puntual , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo
11.
J Exp Zool B Mol Dev Evol ; 330(8): 406-416, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30460778

RESUMO

Bovine bone marrow mesenchymal stem cells (bBMSC) are potential stem cell source which can be used for multipurpose. However, their application is limited because the in vitro maintenance of these cells is usually accompanied by aging and multipotency losing. Considering transforming growth factor-ß (TGF-ß) pathway inhibitor Repsox is beneficial for cell reprogramming, here we investigated its impacts on the maintenance and differentiation of bBMSC. The bBMSC were enriched and characterized by morphology, immunofluorescent staining, flow cytometry, and multilineage differentiation. The impacts of Repsox on their proliferation, apoptosis, cell cycle, multipotency, and differentiation were examined by Cell Counting Kit-8 (CCK-8), real-time polymerase chain reaction, induced differentiation and specific staining. The results showed that highly purified cluster of diffrentiation 73+ (CD73 + )/CD90 + /CD105 + /CD34 - /CD45 - bBMSC with adipogenic, osteogenic, and chondrogenic differentiation capacities were enriched. Repsox treatments (5 µM, 48 hr) enhanced the messenger RNA mRNA levels of the proliferation gene (telomerase reverse transcriptase [ TERT]; basic fibroblast growth factor [ bFGF]), apoptosis-related gene ( bax and Bcl2), antiapoptosis ratio ( Bcl2/bax), and pluripotency marker gene ( Oct4, Sox2, and Nanog), instead of changing the cell cycle, in bBMSC. Repsox treatments also enhanced the osteogenic differentiation but attenuated the chondrogenic differentiation of bBMSC, concomitant with decreased Smad2 and increased Smad3/4 expressions in TGF-ß pathway. Collectively, inhibiting TGF-ß/Smad signaling by Repsox regulates the in vitro maintenance and differentiation of bBMSC.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Pirazóis/farmacologia , Piridinas/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Células da Medula Óssea , Bovinos , Diferenciação Celular/efeitos dos fármacos , Condrogênese/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Osteogênese/fisiologia , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...